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 We would be looking for constants 1c  and 2c  such that  
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Example 2    

Can the same vectors 
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?  If yes, 

explain how. We would again be looking for constants 1c  and 2c  such that  
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Test 
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 confirms the result in example 1. 

 

 Does it work for any point
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Vector Equation Form ( system of linear equations) 

The system 
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                     21 1 22 2 23 3 2 2nna x a x a x a x b      

                     31 1 32 2 33 3 3 3nna x a x a x a x b                                 (1) 

                         

                     1 1 2 2 3 3 mn n mm m ma x a x a x a x b      

can be written in the vector equation form 

                     

11 12 1 1

21 22 2 2

1 2

1 2

n

n

n

mn mm m

a a a b

a a a b
x x x

a a a b

       
       
       
       
       

      
      

                   (2) 

 



Matrix Equation Form  

 

The system in (1) can also be written in the form 
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Example 

 

Express the system 
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a.  in vector equation form; 
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b.  in matrix equation form; 
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Practice Problem 
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a. Express the system in matrix equation form. 



b. Express the system in vector equation form. 

c. Solve the system (RREF). 

 

THEOREM 1 
 

 The system 
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  has either a unique solution, no solution, or infinitely many solutions. 

 

  Proof 

 

  Recall that the system in (1) can be express in the form Ax b , where 
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  If the system has a unique solution we are done, and the same is true if the system has  

  no solution. We will show that if the system has more than one solution, it must have  

  infinitely many of them. Let us assume that x  and y  are both solutions of the system  

 Ax b . Then Ax b  and A y b . Now we let (1 )z t x t y    where t is any  

  real number. Then 

    

                (1 )Az A t x t y A t x y t y A t x A y A t y         

 

                   t t t b b t b bA x A y A y       

 

 Therefore, z is also a solution of the system Ax b , and thus the system has infinitely 

 many solutions.  
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Homework     

1. Do vectors  
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3. Can we span 
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   4.  Can the same vectors 
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        If yes, explain how.   

 

   5.  True or False 

 

     a.   We can span 
3
 with 3 vectors as long as no two are on the same line. 

 

     b.   We can span 
4

 with 4 vectors as long as their RREF results in 4 pivots. 

 

     c.   Two vectors 1v  and 2v  span 
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 if  1 2 0v v  .  


